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PLANE ELECTROMAGNETIC WAVES

Wireless applications are possible because electromagnetic fields
can propagate in free space without any guiding structures.

Plane waves are good approximations of electromagnetic waves in
engineering problems after they propagate a short distance from the
source.
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Time-Harmonic Electromagnetics

In past chapter, field quantities are expressed as functions of time and
position. In real applications, time signals can be expressed as
superimposition of sinusoidal waveforms. So it is convenient to use
the phasor notation to express fields in the frequency domain, just as in
a.c. circuits.

E(x,y,z,t)= Re{E(x,y, Z)ej"”}

OE(x,y,z,t) Re OE(x,y,z)e’”
ot ot

= Re{ja)E(x,y, z)ej"”}
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Time-Harmonic Electromagnetics

Differential form of Maxwell’s equations

ViE = _ 9B
ot
VxH=J+a—D
ot
V-D = p,
V-B =0

Time-harmonic Maxwell’s equations

VxE =-j jwB
VxH =J+ joD
vV..-D = p,

V.B =0
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Wave equations in Source-Free Media

In a source-free media (1.e.charge density p,=0), Maxwell’s
equation becomes:

VXE =-jouH

VxH = (o + jows )E

V-E=0

V-H=0

We will derive a differential equation involving E or H alone.
First take the curl of both sides of the 1st equation:

VXVXE=-jouV xH
V.-E-V’E =—jou(c + joe)E
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Since V.E =0 1n source-free media, we obtain

V’E-y’E=0
where
y' = jou(o + joe)
The above equation 1s called ,and 7 1s

called the propagation constant. In rectangular coordinates,
Helmholtz equation can be decomposed into three scalar
equations:

V’E —y’E, =0 i=x,7,z
Similarly for the magnetic field,

V’H-7’H=0
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Helmoltz Equation and Transmission Line equations

Helmoltz equation Transmission Line equations
V’E-y’E = 0%V
Y 0 ~ _ sz
yA
V'’H-y"H=0 )
ol
—_ =7
0z

In rectangular co-ordinates

VE —y’E =0 i=x,,z
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Plane waves in lossless media

In a lossless medium, the conductive current 1s zero so o 1S
equal to zero; there 1s no energy loss and 1, ¢ are both real
numbers. Therefore in lossless media

y = ]O+\HE

Plane wave 1s a particular solution of the Maxwell’s
equation, where both the electric field and magnetic field
are perpendicular to the propagation direction of the wave.
Let the wave propagate along the z-direction, and the
electric field 1s along the x-direction.
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——r————
Direction of
propatation

E- and H-field vectors for a plane wave
propagating in z-direction

—
£
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E=F (z)a,

Substituting this into Holmholtz equation, and since

OF, _ oL, — (), We obtain
Ox oy
d’E.
dz* —rE=0

This second order linear differential equation has two
independent solutions, so the solution of £ 1s

E.(z)= E;—oe_yz T Eyzoeﬂ/z

The 1st term 1s a wave travelling in the +z direction, and the
2nd term is a wave travelling in the -z direction.
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v 1s called the propagation constant. In general, ¥ 1s complex
y=a+jp

where «, fare the attenuation and phase constants. But in lossless
media,
o =0

L =w /ﬂg (1, € are real)

So the electric field in lossless media 1s given by:

E = (E;{Oe‘fﬂz + E;Oe”ﬂz)ax
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Let u,be the phase velocity with which either the forward or
backward wave is travelling, and A 1s the wavelength.

Since S =w+ ue , therefore

In free space (vacuum), ¢= ¢, = 1, and the phase
velocity 1s the same as the velocity of light in vacuum
(3x108m/s)
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Similarly for the magnetic field, H can be found by solving

H - Vv >< E
— Jou
under the conditions
OE, OE, 0
ox oy
We obtain
H=_ [E e P+ E e+J'BZ]a
jou 0z Y

_ A[E;}e—jﬂz _ E;OeJrj'BZ]ay
o
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We notice that the magnetic field is in the y-direction, 1.e.
perpendicular to the electric field, and the ratio of magnitudes
of electric and magnetic fields is:

E)—Ci_o :E;O :77

H)—Ci_o H;O
_OH K

4 B -

n is called the intrinsic (or wave) impedance of the

medium. In free space 77 has a value approximately
equal to 377Q).
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The above plane wave 1s called TEM (transverse
electromagnetic) wave, because both the electric and magnetic
fields only exist in the transverse directions perpendicular to
the propagation direction.

Other waves (e.g. 1n waveguides) can be also:

(a) TE (transverse electric) wave - electric field exists only in
transverse direction, 1.e. zero electric field in the propagation
direction.

(b) TM (transverse magnetic) wave - magnetic field exists only
in transverse direction, 1.e. zero magnetic field in the
propagation direction.

Intro.15



Example: A uniform plane wave with E=F a_propagates in a
lossless medium (¢=4, ©,=1, 0=0) in the z-direction. If £ has
a frequency of 100MHz and has a maximum value of 10
(V/m) at =0 and z=1/8 (m),

a) write the instantaneous expression for E and H,
b) determine the locations where £ 1s a positive
maximum when =10-3s.

Solution: :
: Jo
V= Jw\/ﬂoﬂrgogr :7 H.&,
. : ] 1
since velocity of light ¢ = =3x10°
lLlOEO
27 x10° 4r .
y=1J V4=
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(a) E=a_10"" cos(zyzlogt—%”zw)

Setting £ =10+ at =0 and z=1/8,

T
=kz =—
? 6
E
The H-field: H=a/H, =a, —
n
77 — ILlrlLlO — 607[
87’80
(b) At =103, for E£_to be maximum,
2710%(107%) —4—”(2,% —l] —+onx
3 8
13 3
z, =—=%=n n=0,12....
8 2
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7.4 Plane Waves in Lossy Media

The electric field in the x-direction 1s given by:

E(2)=Eqe " +E e

where y1s in general complex for lossy media

y =+ jou(c+ joe)
y=a+ jp

So E-field can be written as:

_ pt+ —az —jpz - +4az +jpz
E=F_e e a, + £ e e a,
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Substitute into Maxwell’s equations, the magnetic field is:
I [ . . ]
. y4 +yz
H__77 E_ e - F e y

where the intrinsic impedance 77 1s complex.

_Jou | Jou
4 o+ JweE

4

The loss can be due to (1) conduction loss where oi1s
non-zero, (11) dielectric loss where ¢1s complex,

E=&—-j&
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The E-field of a plane wave propagating in z-
direction in sea water is E=a_100 cos(107n¢) V/m at z=0.
The parameters of sea water are ¢=72, =1, 0=4 S/m. (a)
Determine the attenuation constant, phase constant,
intrinsic impedance,and phase velocity. (b) Find the

distance where the amplitude of E 1s 1% of its value at z=0.

: (a)

y = jou(c+ joe)
=a+ jf

In our case o/ we=200>>1 so that ¢, £ are approximately

o= = rnfupo =8.89
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b |den | |jen
O+ JweE o)

—7
n=(+ /) oy 1+ /) 72(5><10 )47 =10 )_ﬂe]ﬂ/4
o 4
7
Phase velocity: u = ©_ 10" 7 =13.53 x10%m/s
£ 8.89

(b) Distance z, where wave amplitude decreases to 1%:

e %1 =0.01

2, = Lin10o = 2093
a 8.89

= 0.518
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7.5 Polarization: Polarization describes how the E-field vector
varies with time as the wave propagates. Let E,, E|, be the
components of E-field in the x and y directions.

 Linear polarization: The E-field vector 1s always in the same
direction. E,, E, are either in phase or out of phase.

E(¢)=FE, cos(wt— fz)a, + E,, cos(wt — pz)a,
E(t)=FE, cos(wt— pz)a, — E ,cos(wt— fz)a,
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* Circular polarization: The E-field vector rotates around the
axis of propagation and has constant amplitude. E,, £, have
equal magnitudes and phase angle difference of /2.

E(¢t)=E, cos(wt— pz)a, + E, cos(wt— pPzrrm/2)a,

» Elliptic polarization: The E-field vector rotates around the
axis of propagation but has time-varying amplitude. £, £ can
have any values of magnitude and phase angle difference.

E(t)=E, cos(wt— pz)a, + E, ,cos(wt — pz+0)a,
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7.6 Power transmission - Poynting’s Theorem

Power 1s transmitted by an electromagnetic wave in the
direction of propagation. It can be derived from Maxwell’s
equation in the time domain that:

2 2
—f)ExH-dSzJ-E-Jdv—l—ij 28 +'UH dv
S 4 ot 2 2

On the right hand side, the 1st term represents the
instantaneous ohmic power loss, the 2nd and 3rd term
represent the rate of increase of energies stored in the electric
and magnetic fields respectively. So the left hand side
represents the net instantaneous power supplied to the
enclosed surface, or
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W,, = pExH.dS
P(1)=E(t)x H(¢)

The instantaneous Poynting vector P (in watt per sq.m) represents
the direction and density of power flow at a point.

In time-varying fields, 1t 1s more important to find the average
power. We define the average Poynting vector for periodic
signals as P,

1 ¢T 1 (T
Pavg = jo Pdr = jo E(¢)x H(¢)dt

Using complex phasor notation of E, H,

P =%Re(E><H*)

avg
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For a uniform , E & H field vectors are given by:

E=F e %e /P9

1 —-az — jpz
H :—[Eme e/’ ]ay
n
j6
7= |nle”™
Substituting in equ. of P, gives
EZ
P e cos 0, a,

avg = 2‘77‘
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Medium 1(c,&,1,)

Medium 2 (o,.¢,,,)

. Et
(incident wave) H l_ a,

t

l E, (transmitted wave)
a, H

zZ

(reflected wave)

a,— propagation direction

@ y direction

-y direction
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Incident wave:

Reflected wave:

Transmitted wave:

— —)V1Z
Ei T Eioe ax
E.
— 712 _ 10 —71%2
H =H e a, =—=e '"a,
m
— V12
E =F e'"a_
H =H e (-a ):—E’”O e’"a
v ro y v
m
— )2z
Et T Etoe ax
E
— —)2Z —_ 1o —)2Z
H =H,e " a =—e¢ ""a,

77,
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Boundary conditions at the interface (z=0):

Tangential components of E and H are continuous in the
absence of current sources at the interface (refer to tutorials), so

that Eio_l_Ero :Eto
Hio + Hro — Hz‘o
| E
_(Eio_Em): =
i e
. : _ 70 772 o 771
Reflection coefficient I' = =
Ezo 772 + 771
Eto 2772

Transmission coefficient 7 = =
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Note that I" and T may be complex, and
1+T'=1
0<|r|<1
Similar expressions may be derived for the magnetic field.

In medium 1, a standing wave 1s formed due to the
superimposition of the incident and reflected waves.
Standing wave ratio can be defined as in transmission lines.
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